Электротехника, электроника, электрические машины, примеры решения, задачи.

Катушка индуктивности – это элемент характеризующимся своим свойством накапливать энергию магнитной поля.

Первый закон коммутации гласит: ток, протекающий в катушке индуктивности, в момент коммутации не может измениться скачком. Это понятно из формулы: 

Предположим, что ток iL изменился скачком, то есть: 

А значит, что и напряжение в данном случае будет бесконечно велико: 

Чего в природе быть не может, так как, следуя закону сохранения энергии, для этого бы потребовался источник энергии бесконечной мощности.

На схеме представлена RL – цепь, запитанная от источника постоянного тока. При замыкании ключа в положение 1, ток протекает по цепи “плюс” источника – резистор R – катушка индуктивности  -  “минус” источника. Тем самым, происходит накопление энергии магнитного поля в катушке индуктивности.

Напряжение и ток, протекающие в данной цепи, изменяются по экспоненциальному закону. Причем, их изменения взаимообратные, т.е. с увеличением тока, падение напряжения на катушке уменьшается.

Если мы переведем ключ в положение 2, то ток, не изменив своего направления, начнет уменьшаться по экспоненте до нуля. С физической точки зрения, в данном случае катушка отдает накопленную энергию магнитного поля в цепь, где она расходуется на тепловые потери в резисторе.

Одной из характеристик данной цепи является постоянная времени τ. Она зависит от величины индуктивности и активного сопротивления. Примерно за 5 τ ток в цепи достигает своего минимума или максимума. 

Реализуем эту схему в программной среде Multisim 13.0 , взяв значения R =  10 Ом, L = 0,1 Гн.

Скачать файл Multisim 13.0

Рассчитаем время, за которое ток в цепи достигает установившегося значения: 

Собранная схема запитана от батареи 12 В. Для снятия значений тока, использовался инструмент “current probe”. Внутреннее активное сопротивление катушки индуктивности, принято равным нулю.

Конденсатор – это элемент электрической цепи, который способен накапливать электрический заряд. Важной особенностью конденсатора является его свойство не только накапливать, но и отдавать заряд, причем практически мгновенно.

Согласно второму закону коммутации напряжение на конденсаторе не может измениться скачком. Эта особенность активно используется в различных фильтрах, стабилизаторах, интегрирующих цепях, колебательных контурах и тд.

В том, что напряжение не может измениться мгновенно, можно убедиться из формулы

Если бы напряжение в момент коммутации изменилось скачком, это означало бы, что скорость изменения du/dt = ∞, чего в природе быть не может, так как потребовался бы источник бесконечной мощности.

Процесс заряда конденсатора

Схема заряда и разряда конденсатора

На схеме представлена RC – цепь (интегрирующая), запитанная от постоянного источника питания. При замыкании ключа в положение 1 происходит заряд конденсатора. Ток проходит по цепи: “плюс” источника – резистор – конденсатор - “минус” источника.

Напряжение на обкладках конденсатора изменяется по экспоненциальному закону. Ток, протекающий через конденсатор, также изменяется по экспоненте. Причем эти изменения взаимообратны, чем больше напряжение, тем меньше ток, протекающий через конденсатор. Когда напряжение на конденсаторе сравняется с напряжением источника, процесс заряда прекратится, и ток в цепи перестанет течь.


Теперь, если мы переключим ключ в положение 2, то ток потечет в обратную сторону, а именно по цепи: конденсатор – резистор – “минус” источника. Таким образом, конденсатор разрядится. Процесс будет носить также экспоненциальный характер.

Важной характеристикой данной цепи является произведение RC, которую еще называют постоянной времени τ. За время τ конденсатор заряжается или разряжается на 63%. За 5 τ конденсатор отдает или принимает заряд полностью.

От теории перейдем к практике. Возьмем конденсатор на 0,47 мкФ и резистор номиналом 10 КОм.

Рассчитаем примерное время, за которое должен зарядиться конденсатор.

Теперь соберем данную схему в multisim и попробуем промоделировать

Собранная схема, запитана от батареи 12 В. Меняя положение переключателя S1, мы сначала заряжаем, а затем разряжаем конденсатор через сопротивление R = 10 КОм. Для того чтобы увидеть наглядно работу схемы посмотрите видео ниже.

  Потенциометр – это электрический элемент, который позволяет регулировать напряжение на нагрузке от нуля до напряжения источника питания. По сути, потенциометр это переменный резистор, который имеет три вывода (на схеме обозначены как точки A, B, C). Перемещая ползунок потенциометра, мы изменяем сопротивление между этими выводами, а следовательно и падение напряжения на них.

 Схема включения

Для потенциометра справедливо 

Не трудно заметить, что потенциометр это регулируемый делитель напряжения, и поэтому схему 1, можно видоизменить.

  На рисунке представлена схема делителя напряжения. Точки А, B, С расставлены по аналогии с потенциометром. R1 и R2 это сопротивления Rab и Rbc. В формуле, в знаменателе представлена сумма двух этих сопротивлений, другими словами Rac = R1+R2.

 Необходимо также учитывать, что для стабильной работы потенциометра требуется подбирать нагрузку Rн значительно большую, чем сопротивление потенциометра Rп. 

   Спасибо за внимание!

Вторник, 14 Октябрь 2014 19:42

Стань автором

Автор

 

У тебя есть интересные идеи и мысли? Ты хочешь поделиться своими знаниями с другими? Ты хочешь чтобы твое имя узнали десятки сотен наших посетителей? Тогда напиши свою статью, пришли её на адрес  Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. , и если она понравится, мы её разместим на нашем сайте от твоего имени.

Что гарантируется при прохождении статьи:

    размещение от имени автора

    сохранение статьи на сайте, пока он существует

    вознаграждение 50-100 р. на счет мобильного или webmoney

Мы ждем твои статьи! Подмигиваю

 

PS Перед написанием статьи рекомендуем сначала прислать название темы.

  Всем со школы знаком знаменитый опыт на уроке физики – опыт Фарадея. Как известно, он заключался в том, что в катушку индуктивности опускался постоянный магнит, при этом стрелка гальванометра, подключенного к этой катушке, отклонялась. Аналогичное явление происходило и при вынимании магнита из катушки, с тем лишь исключением, что стрелка отклонялась в другую сторону.

  Почему так происходит? Почему стрелка не остается в том же положении, когда магнит уже опущен? Почему стрелка отклоняется в разные стороны? Все просто, но сначала немного истории.

  В девятнадцатом столетии, некий английский физик Майкл Фарадей проводил опыты с магнитным полем. В то время было известно, что вокруг проводника с током, существует магнитное поле. Фарадей, как и многие другие физики того времени старался доказать обратное, то есть то, что магнитное поле, может создать электрический ток. Он, на протяжении 10 лет ставил всем известный опыт, но по закону подлости, гальванометр был вне зоны видимости в момент, когда он опускал магнит. Существует мнение, что однажды, его помощник обратил внимание на гальванометр, когда Фарадей опускал магнит, и заметил отклонение, но это лишь неподтвержденные сведения. Так или иначе, в 1831 году было открыто явление электромагнитной индукции.

Иллюстрация явления электромагнитной индукции

  Закон электромагнитной индукции гласит, что переменное магнитное поле пронизывающее проводник, индуцирует в нем электрический ток. Причем, чем быстрее изменяется магнитное поле, тем сильнее индуцируемый ток.

  Именно поэтому, стрелка не отклоняется, когда магнит находится в покое, ведь вместе с ним и магнитное поле остается неизменным. Отклонение стрелки в разные стороны объясняется изменением направления индукционного тока, который в свою очередь зависит от направления магнитного потока.

  Явление электромагнитной индукции подтверждает то, что все законы физики симметричны. Без открытия этого явления, человечество никогда бы не продвинулось так далеко в электричестве и в жизни в целом. 

Довольно неприятное и распространённое явление в наше время это скачки напряжения. Зачастую благодаря скачкам из строя выходят телевизоры, компьютеры, стиральные машинки, холодильники и т.д. Как правило, страдает блок питания, так как он первым принимает удар на себя. Ремонт зачастую обходится достаточно дорого, а компенсации добиться очень проблематично.

В связи с этим, многие люди бросаются в крайности и начинают покупать различные стабилизаторы, фильтры и тд. Зачастую это приводит к лишней трате денег, а эффект далеко не идеален. Так происходит потому что, обычный человек не всегда понимает суть проблемы и доверяется совету продавца, который рад всучить дорогой фильтр. Попробуем подойти к этому делу с умом.

Для современной бытовой техники опасна не столько неровность синусоиды питающего напряжения (особенно для стиральных машинок и холодильников), сколько кратковременные скачки, которые значительно превышают номинальные значения напряжения, на которые рассчитана аппаратура. Поэтому зачастую надобность в различных стабилизаторах отпадает. Но вот как пресечь скачки? Тут на помощь приходит однофазное реле контроля напряжения.

Принцип работы электронного реле напряжения основан на сравнении напряжения питания с эталонным значением, которое находится в памяти реле. При несоответствии напряжения, реле тут же срабатывает и отключает нагрузку. Благодаря этому, техника не успевает сгореть. На этом собственно все! Никаких хитростей нет, устройство крайне простое, но достаточно эффективное.

внешний вид Рассмотрим поближе однофазное электронное реле Uniel UBR-16VR. В магазине такое реле вы можете найти по цене около 600 рублей. Предназначено для использования в бытовых условиях и выдерживает нагрузку до 3,5 КВт или 16 А, что для дома более чем достаточно. Реле снабжено функциями вольтметра (выводит действующее значение напряжения на дисплей), под дисплеем находятся четыре кнопки – set,↑,↓,res.

Перед использованием реле необходимо настроить. Настройки собственно сводятся к установлению нижнего и верхнего предела напряжения, и времени задержки. К примеру, мы хотим установить реле для плазменного телевизор, для этого узнаем на задней панели телевизора значения питающего напряжения, допустим в нашем случае это 100-240 В. Мы же, для надёжности зададимся пределом 200-235 В.

Итак, вставим реле в розетку.

Даём ему на загрузку 20 с, после чего на нем высвечивается значение напряжения. В нашем случае 217 В, что очень неплохо.

Отображение действующего значения на дисплее В соответствии с инструкцией  нажимаем и удерживаем кнопку set, а затем выбираем режим Udn (нижний порог напряжения), устанавливаем значение 200 В.

Установление нижнего порога напряжения 

Затем выбираем режим Uup (верхний порог напряжения) и устанавливаем 235 В.

Установление верхнего порога напряжения

Последняя настройка это время задержки tir – по сути, это время через которое после отключение реле снова включится. Установим значение в 10 с. 

Установление времени задержки

Теперь, когда напряжение выйдет за пределы 200-235 В реле автоматически отключится и снова включится через 10 с. Кнопка res служит для сброса до заводских настроек.

Проверим работоспособность реле. Установим нижний порог в 210 В, а время задержки 10с. Подключим к сети фен, включим электроплиту, чтобы искусственно вызвать просадку напряжения. На видео видно, что после включения фена, реле тут же выключается. Затем оно должно включится через 10с, но перед этим оно какое-то время сигнализирует о низком напряжении “lo”. 

На этом все! Спасибо за внимание! 

Многие металлы, например, такие как медь, алюминий, серебро обладают свойством проводимости электрического тока за счет наличия в их структуре свободных электронов. Также, металлы имеют некоторое сопротивление току, и у каждого оно свое. Сопротивление металла сильно зависит от его температуры.

Понять, как зависит сопротивление металла от температуры можно, если увеличивать температуру проводника, к примеру,  на участке от 0 до t2 °С. С увеличением температуры проводника, его сопротивление также увеличивается. Причем эта зависимость имеет практически линейный характер.

 С физической точки зрения увеличение сопротивления с ростом температуры можно объяснить увеличением амплитуды колебаний узлов кристаллической решетки, что в свою очередь затрудняет прохождение электронов, то есть увеличивается сопротивление электрическому току. 

Глядя на график можно увидеть, что при t1 металл имеет сопротивление намного меньше, чем, например при t2. При дальнейшем снижении температуры можно прийти в точку t0, где сопротивление проводника будет практически равно нулю. Конечно, его сопротивление равно нулю быть не может, а лишь стремится к нему. В этой точке проводник становится сверхпроводником. Сверхпроводники используются в сильных  магнитах в качестве обмотки. На практике данная точка лежит намного дальше, в районе абсолютного нуля, и определить её по данному графику невозможно.

Для данного графика можно записать уравнение 

Воспользовавшись данным уравнением можно найти сопротивление проводника при любой температуре. Здесь нам понадобиться точка t0 полученная ранее на графике. Зная значение температуры в этой точке для конкретного материала, и температуры t1 и t2 можем найти сопротивления.

Изменение сопротивления с температурой используется в любой электрической машине, где прямой доступ к обмотке невозможен. К примеру, в асинхронном двигателе достаточно знать сопротивление статора в начальный момент времени и в момент, когда двигатель работает. Путём несложных расчётов, можно определить температуру двигателя, что на производстве делается в автоматическом режиме.

Заземление – устройство, предохраняющее человека от поражения электрическим током. Благодаря использованию различных заземляющих приспособлений удается избежать жертв на производстве и в быту. Собственно в этом его основное предназначение. Но чтобы правильно воспользоваться заземлением необходимо для начала понять, что это такое и как оно работает. 

Что такое заземление?

Итак, что из себя представляет заземление? Конструктивно это чаще всего обычный кусок провода, который одним концом соединён с корпусом электрического аппарата, а другим концом с землей, откуда собственно и название. Заземление также может присутствовать в вилке современного электроинструмента,  там его роль такая же – при повреждении инструмента заземление предохраняет человека от удара электрическим током.

Существует множество различных систем заземления таких как TN-C, TN-S, TN-C-S и другие, собственно, обычному человеку, не имеющего электротехнического образования вовсе не обязательно вникать в данные вещи настолько глубоко, поэтому мы движемся дальше.

Как работает заземление

Суть заземления проста – служить проводником. Допустим, случилась аварийная ситуация – сломалась стиральная машина. При этом замкнуло обмотку электродвигателя (или что-нибудь еще) и корпус машинки оказался под напряжением. Человек ничего не подозревая может коснуться корпуса, после чего его ударит током. Для того чтобы этого не произошло, стиральную машину заземляют. Тогда если человек коснётся корпуса, то ток пройдет не через него, а через заземление. А произойдёт так потому, что кожа человека имеет сопротивление порядка нескольких кило Ом, а сопротивление заземляющего проводника не более 5-10 Ом, что в тысячу раз меньше чем сопротивление кожи человека. Выходит, что току в тысячу раз проще пройти по проводу и уйти землю, чем пройти через человека.  

В чем разница между заземлением и занулением

Если говорить простым языком, то зануление это соединение корпуса приемника электроэнергии с нулем. Ноль – это провод, имеющий нулевой потенциал и идущий из трансформатора. Зануление работает так: если на корпус приемника попадает провод под напряжением, то он через корпус замыкается на ноль, что вызывает короткое замыкание. Защита автоматически срабатывает и отключает питание.

Зануление это прием который используется только на производстве и по своим защитным свойствам гораздо хуже заземления. К сожалению, во многих старых домах не существует возможности защитить проводку квартиры с помощью заземления и прибегают занулению, что крайне не безопасно.

Вот мы вкратце и ответили на вопрос “зачем нужно заземление?”. Надеемся материал оказался вам полезен! Удачи!  

Наличие обмотки возбуждения (ОВ) у двигателя постоянного тока позволяет осуществлять различные схемы подключения. В зависимости от того как включена ОВ, различают двигатели с независимым возбуждением, с самовозбуждением, которое делится на последовательное, параллельное и смешанное.

Двигатель с независимым возбуждением

В ДПТ с независимым возбуждением обмотку возбуждения подключают к отдельному источнику питания (рис. 1). Это может быть связано с различными напряжениями возбуждение Uв и напряжения цепи якоря U. При данной схеме подключения ОВ не имеет электрической связи с обмоткой якоря. Для уменьшения потерь в ОВ, и создания необходимой МДС необходимо уменьшить ток возбуждения, увеличив число витков. Обмотку возбуждения выполняют из малого числа витков, так чтобы ток Iв составлял 2…5% от Iя. Выбор данной схемы возбуждения для двигателя зависит от свойств электропривода. 

 

ДПТ с параллельным возбуждением

По сути, схема подключения ОВ с параллельным возбуждением(рис.2) аналогична схеме с независимым возбуждением. Свойства двигателя при подключении по обеим схемам одинаковы. Плюсом данного вида подключения является то, что отпадает необходимость в отдельном источнике питания. 

 

ДПТ с последовательным возбуждением

При подключении по данной схеме ОВ соединена последовательно цепи якоря (рис.3), при этом ток якоря равен току возбуждения. В связи с этим ОВ изготавливают из провода толстого сечения. Данную схему используют, если требуется обеспечить большой пусковой момент. При уменьшении нагрузки на валу меньше 25% от номинальной, частота вращения резко увеличивается и достигает опасных для двигателя значений. Характеристика ДПТ с последовательным возбуждением “мягкая”.

ДПТ со смешанным возбуждением

ДПТ со смешанным возбуждением (рис.4) имеет две ОВ, одна из которых соединена последовательна, а другая параллельно якорной цепи. При согласном соединении обмоток с увеличением нагрузки на валу растёт магнитный поток, что приводит к уменьшению частоты вращения. При встречном соединении суммарный магнитный поток с увеличением нагрузки уменьшается, что приводит к резкому увеличению частоты вращения. Это приводит двигатель к нестабильному режиму работы, поэтому последовательную обмотку выполняют из малого числа витков, чтобы при увеличении нагрузки магнитный поток снижался незначительно, тем самым стабилизируя работу двигателя.

В связи с широким развитием вычислительных устройств задача расчета и моделирования электрических схем заметно упростилась. Наиболее подходящим программным обеспечением для данных целей является продукт National instruments – Multisim (Electronic Workbench ).

В данной статье рассмотрим простейшие примеры моделирования электрических схем с помощью Multisim.

Итак, у нас имеется Multisim 12 это последняя версия на момент написания статьи. Откроем программу и создадим новый файл с помощью сочетания Ctrl+N.

 

После создания файла перед нами открывается рабочая зона. По сути, рабочая зона Multisim – это поле для собирания требуемой схемы из имеющихся элементов, а их выбор, поверьте велик.

Кстати вкратце о элементах. Все группы по умолчанию расположены на верхней панели. При нажатии на какую либо группу, перед вами открывается контекстное окно, в котором вы выбираете интересующий вас элемент.

 

По умолчанию используется база элементов – Master Database. Компоненты содержащиеся в ней разделены на группы.

Перечислим вкратце содержание групп.

Sources содержит источники питания, заземление.

Basic – резисторы, конденсаторы, катушки индуктивности и т.д.

Diodes – содержит различные виды диодов.

Transistors - содержит различные виды транзисторов.

Analog - содержит все виды усилителей: операционные, дифференциальные, инвертирующие и т.д.

TTL - содержит элементы транзисторно-транзисторная логики

CMOS - содержит элементы КМОП-логики.

MCU Module – управляющий модуль многопунктовой связи.

Advanced_Peripherals – подключаемые внешние устройства.

Misc Digital - различные цифровые устройства.

Mixed - комбинированные компоненты

Indicators - содержит измерительные приборы и др.

С панелью моделирования тоже ничего сложного, как на любом воспроизводящем устройстве изображены кнопки пуска, паузы, останова. Остальные кнопки нужны для моделирования в пошаговом режиме.

На панели приборов расположены различные измерительные приборы (сверху вниз) - мультиметр, функциональный генератор, ваттметр, осциллограф, плоттер Боде, частотомер, генератор слов, логический конвертер, логический анализатор, анализатор искажений, настольный мультиметр.

Итак, бегло осмотрев функционал программы, перейдём к практике.

Пример 1

Для начала соберём простенькую схему, для этого нам понадобиться источник постоянного тока (dc-power) и пара резисторов (resistor).

Допустим нам необходимо определить ток в неразветвленной части, напряжение на первом резисторе и мощность на втором резисторе. Для этих целей нам понадобятся два мультиметра и ваттметр. Первый мультиметр переключим в режим амперметра, второй – вольтметра, оба на постоянное напряжение. Токовую обмотку ваттметра подключим во вторую ветвь последовательно, обмотку напряжения параллельно второму резистору.

Есть одна особенность моделирования в Multisim – на схеме обязательно должно присутствовать заземление, поэтому один полюс источника мы заземлим.

После того как схема собрана нажимаем на пуск моделирования и смотрим показания приборов.

 

Проверим правильность показаний (на всякий случай=)) по закону Ома 

Показания приборов оказались верными, переходим к следующему примеру.

Пример 2

Соберём усилитель на биполярном транзисторе по схеме с общим эмиттером. В качестве источника входного сигнала используем функциональный генератор (function generator). В настройках ФГ выберем синусоидальный сигнал амплитудой 0,1 В, частотой 18,2 кГц.

С помощью осциллографа (oscilloscope) снимем осциллограммы входного и выходного сигналов, для этого нам понадобится задействовать оба канала.

Чтобы проверить правильность показаний осциллографа поставим на вход и на выход по мультиметру, переключив их предварительно в режим вольтметра.

Запускаем схему и открываем двойным кликом каждый прибор.

 

Показания вольтметров совпадают с показаниями осциллографа, если знать что вольтметр показывает действующее значение напряжения, для получения которого необходимо разделить амплитудное значение на корень из двух.

Пример 3

С помощью логических элементов 2 И-НЕ соберём мультивибратор, создающий  прямоугольные импульсы требуемой частоты. Чтобы измерить частоту импульсов воспользуемся частотомером (frequency counter), а проверим его показания с помощью осциллографа. 

Итак, допустим, мы задались частотой 5 кГц, подобрали опытным путём требуемые значения конденсатора и резисторов. Запускаем схему и проверяем, что частотомер показывает приблизительно 5 кГц. На осциллограмме отмечаем период импульса, который в нашем случае равен 199,8 мкс. Тогда частота равна 

Мы рассмотрели только малую часть всех возможных функций программы. В принципе, ПО Multisim будет полезен как студентам, для решения задач по электротехнике и электронике, так и преподавателям для научной деятельности и т.д. 

Надеемся данная статья оказалась для вас полезной. Спасибо за внимание! 

Страница 1 из 7

Материал на сайте носит информационный характер и предоставлен для ознакомления.
Копирование материала разрешено только при указании прямой индексируемой ссылки на electroandi.ru!
Для связи с администрацией - electroandi@yandex.ru

Rambler's Top100