Электронно-дырочный переход
Электронно-дырочный переход - это область, которая разделяет поверхности электронной и дырочной проводимости в монокристалле.
Электронно-дырочный переход изготавливают в едином монокристалле, в котором получена достаточно резкая граница между областями электронной и дырочной проводимостей.
На рисунке изображены две граничащие области полупроводника, одна из которых содержит донорную примесь (область электронной, то есть n-проводимости), а другая акцепторную примесь (область дырочной проводимости, то есть p-проводимости). Чтобы понять как формируется тот или иной тип полупроводника, рекомендуем прочесть статью - Примесные полупроводники.
При отсутствии приложенного напряжения наблюдается диффузия основных носителей зарядов из одной области в другую. Так как электроны это основные носители заряда, и в области n их концентрация больше они диффундируют в p-область заряжая отрицательно приграничный слой этой области. Но уходя со своего места электроны создают вакантные места – дырки, тем самым заряжая приграничный слой n-области положительно. Таким образом, через достаточно короткий промежуток времени с обеих сторон поверхности раздела образуются противоположные по знаку пространственные заряды.
Электрическое поле, создаваемое пространственными зарядами, препятствует дальнейшей диффузии дырок и электронов. Возникает так называемый потенциальный барьер, высота которого характеризуется разностью потенциалов в пограничном слое.
Электронно-дырочный переход, во внешнем исполнении реализуется в виде полупроводникового диода.
Если к электронно-дырочному переходу приложить внешнее напряжение так, что к области с электронной проводимостью подключён отрицательный полюс источника, а к области с дырочной проводимостью – положительный, то направление напряжения внешнего источника будет противоположно по знаку электрическому полю p-n перехода, это вызовет увеличение тока через p-n переход. Возникнет прямой ток, который будет вызван движение основных носителей зарядов, в нашем случае это движение дырок из p области в n, и движение электронов из n области в p. Следует знать, что дырки движутся противоположно движению электронов, поэтому на самом деле, ток течет в одну сторону. Такое подключение называют прямым. На вольт-амперной характеристике такому подключению будет соответствовать часть графика в первом квандранте.
Но если изменить полярность приложенного к p-n переходу напряжения на противоположное, то электроны из пограничного слоя начнут движение от границы раздела к положительному полюсу источника, а дырки к отрицательному. Следовательно, свободные электроны и дырки будут отдаляться от пограничного слоя, создавая тем самым прослойку, в которой практически отсутствуют носители зарядов. В результате ток в p-n переходе снижается в десятки тысяч раз, его можно считать приближённо равным нулю. Возникает обратный ток, который образован не основными носителями заряда.Такое подключение называют обратным. На вольт-амперной характеристике такому подключению будет соответствовать часть графика в третьем квандранте.
Вольт-амперная характеристика
При прямом подключении электронно-дырочного перехода, ток возрастает с увеличением напряжения. При обратном подключении ток достигает значения Iнас, называемое током насыщения. Если продолжать увеличивать напряжение при обратном включении, то может настать пробой диода. Это свойство также используется в различных стабилитронах и т.д.
Свойства p-n перехода широко применяются в электронике, а именно в диодах, транзисторах и других полупроводниках.
Читайте также - Проводимость полупроводников