Метод наложения токов. Пример решения
Наряду с методом контурных токов для анализа электрических цепей используется другой метод – метод наложения. Этот метод основан на принципе наложения, который применяется только к линейным системам.
Метод наложения относительно прост, и в основном применяется для не сложных электрических цепей.
Его суть заключается в том, что токи в ветвях определяются как алгебраическая сумма их составляющих от каждого источника. То есть каждый источник тока вносит свою часть в каждый ток в цепи, а чтобы найти эти токи, нужно найти и сложить все составляющие. Таким образом, мы сводим решение одной сложной цепи к нескольким простым (с одним источником).
Порядок расчета
1 – Составление частных схем, с одним источником ЭДС, остальные источники исключаются, от них остаются только их внутренние сопротивления.
2 – Определение частичных токов в частных схемах, обычно это несложно, так как цепь получается простой.
3 – Алгебраическое суммирование всех частичных токов, для нахождения токов в исходной цепи.
Пример решения методом наложения
1. Для начала произвольно выберем направление токов, если в итоге какой либо ток получится со знаком минус, значит нужно изменить направление данного тока на противоположное.
2. Составим частную схему с первым источником ЭДС и рассчитаем частные токи в ней, убрав второй источник. Для удобства частичные токи будем обозначать штрихами.
Свернем схему к одному контуру, с сопротивлением источника и эквивалентным сопротивлением цепи для нахождения тока источника I1. Для тех, у кого возникают затруднения с нахождением эквивалентного сопротивления рекомендуем прочесть статью виды соединения проводников.
Найдем ток по закону Ома для полной цепи
Найдем напряжение на R2345
Тогда ток I3 равен
А ток I4
Определим напряжение на R25
Найдем токи I2 и I5
3. Составим частную схему со вторым источником ЭДС
Аналогичным образом вычислим все частичные токи от второй ЭДС
4. Найдем токи в исходной цепи, для этого просуммируем частичные токи, учитывая их направление. Если направление частичного тока совпадает с направлением исходного тока, то берем со знаком плюс, в противном случае со знаком минус.
5. Проверим с правильность решения с помощью баланса мощностей.
Небольшая погрешность связана с округлениями промежуточных значений в ходе выполнения вычислений.
Читайте также - Метод узловых потенциалов