Метод наложения токов. Пример решения

Наряду с методом контурных токов для анализа электрических цепей используется другой метод – метод наложения. Этот метод основан на  принципе наложения, который применяется только к линейным системам.

Метод наложения относительно прост, и в основном применяется для не сложных электрических цепей.

Его суть заключается в том, что токи в ветвях определяются как алгебраическая сумма их составляющих от каждого источника. То есть каждый источник тока вносит свою часть в каждый ток в цепи, а чтобы найти эти токи, нужно найти и сложить все составляющие. Таким образом, мы сводим решение одной сложной цепи к нескольким простым (с одним источником).

Порядок расчета 

1 – Составление частных схем, с одним источником ЭДС, остальные источники исключаются, от них остаются только их внутренние сопротивления.

2 – Определение частичных токов в частных схемах, обычно это несложно, так как цепь получается простой.

3 – Алгебраическое суммирование всех частичных токов, для нахождения токов в исходной цепи.

Пример решения методом наложения 

1. Для начала произвольно выберем направление токов, если в итоге какой либо ток получится со знаком минус, значит нужно изменить направление данного тока на противоположное.

 

2. Составим частную схему с первым источником ЭДС и рассчитаем частные токи в ней, убрав второй источник. Для удобства частичные токи будем обозначать штрихами. 

Свернем схему к одному контуру, с сопротивлением источника и эквивалентным сопротивлением цепи для нахождения тока источника I1. Для тех, у кого возникают затруднения с нахождением эквивалентного сопротивления рекомендуем прочесть статью виды соединения проводников.

 

Найдем ток по закону Ома для полной цепи

Найдем напряжение на R2345

 

Тогда ток I3 равен

А ток I4

 

Определим напряжение на R25 

Найдем токи I2 и I5

 

3. Составим частную схему со вторым источником ЭДС 

Аналогичным образом вычислим все частичные токи от второй ЭДС 

4. Найдем токи в исходной цепи, для этого просуммируем частичные токи, учитывая их направление. Если направление частичного тока совпадает с направлением исходного тока, то берем со знаком плюс, в противном случае со знаком минус.

 

5. Проверим с правильность решения с помощью баланса мощностей. 

Небольшая погрешность связана с округлениями промежуточных значений в ходе выполнения вычислений.

Читайте также - Метод узловых потенциалов

1 1 1 1 1 1 1 1 1 1 2.85 (375 Голоса)
  • Просмотров: 112339